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I. INTRODUCTION

It is generally recognized that the panel flutter phenomenon must be

taken into account when designing the skin or exterior covering of high speed

aircraft and missiles. Usable design criteria based on panel flutter aspects

have not as yet been developed, and on the whole the designer is guided by

previous experience and/or by experimental data obtained in special tests. It

is clear, therefore, that unified design criteria are needed.

Design criteria can be developed from quantitative data that suf-

ficiently account for the effects of all pertinent parameters. At present,

quantitative data for the panel flutter phenomenon are not available in such

sufficient amounts. This lack of data is due in part to theoretical limita-

tions, in part to the difficulty of performing good experiments, and in part

simply to the fact that a large number of pertinent parameters are invol_ed.

A theoretical parametric study is therefore conducted here, having as its ob-

jective quantitative flutter data for a moderately large range of the impor-

tant parameters. It is hoped that these data will be useful both in the ultl-

mate development of design criteria and in the intermediate task of evaluating

theoretical techniques by means of suitable experiments.

The theoretical parametric study is conducted for an array of simply

supported, flat, rectangular panels, extending to infinity in the spanwise

direction and to one panel in the chordwise direction. The low supersonic

Mach number region is investigated, and the effects of Mach number, aspect

ratio, panel material and altitude, are determined. The numerical results are

presented in Figs. 2 to 29* in the form of critical flutter boundaries in a

generalized parameter plane.

II. EQUATIO_NS OF MOTION

Flutter equations of motion for an array of simply supported flat

panels extending to infinity in the spanwise direction and to a finite number

of panels in the chordwise direction are derived in [1]**. In the derivation,

small deflection plate theory is used to represent the structural behavior,

and since the low supersonic region is of interest, exact, linearized, three-

dimensional aerodynamic theory is used to determine the aerodynamic pressure

on the plate. An approximate solution to the resulting differential equations

* Figures i through 37 appear in Appendix A.

** Numbers in square bracket refer to the bibliography.
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of motion for the transverse displacement w is obtained by the Galerkin
method. The natural vibration modesof a continuous beam, simply supported at
equally spaced intervals, are used to represent the chordwlse and spanwise
deflection shapes of the panel array. In the spanwise direction only the first
modeis retained since it has been shownto yield the most critical flutter
requirements. Thus, the transverse displacement of the panel array is approxi-
mated by

w(x,y,t) =
Imag" Im:_l qm

|
sin m____xsin _Y eJ(Jt_

a b J

where the generalized coordinates, qm ' are complex in general. The flutter
equations, finally obtained, are*:

(I+j_)M2 _e2+s2)2__-=t(8_1_2+62s2)_j%_]- k2_%

where

N

8 m=l

(l)

P2E_3 Sl = 62 _, - __

e_ePs3(1-_ 2 ) c_'2p s c_2ps P

[k(M 2-2) + Eml%'_ = J L- _2 6m,_

_[(1 ( 1)_e-J_%, +%,_]ra_'Fm)¢m,_ " - m,_ __,+

£

* Equations (1) follow directly from equations (5.7) of Ill if the terms asso-

ciated with large deflections are dropped and the coefficients regrouped.
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6m,_ = 0 for m _

=iform=_

Cm,_ = 0 for (m+_)L = even

2_
for (m+_)_= odd

q

r=l
(ardr,m+brfr,m)

q

r=l
(arer,m+brcr,m)

Gml_ = _ [(argr,m,_+brhr,m,_) cos kr L
r=l

+ J(arhr,m,_+brgr,m,_) sin krL]

q

Hm,_= Z
r=l

(argr, m,_+brhr.,m,_)

_ o - ! [(KM-k)%_r2]
q

br _kr
_2

Cr, m i I ]= _- (_r+m_)2K%2" (_r__)2.K_2
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dr,m = kr+m")2.K 2

1 [ _'r+mNer,m = _ (kr+mW)2.K2M 2

fr,m-- _ (kr+m_)2 K91_2 + (kr_m_)2_K2M2]

ooo( r-q.

and additional definitions are given in the llst of symbols.

The summation over the index r in the above terms results from an

approximation introduced in the aerodynamic pressure term; namely, Bessel

functions are approximated by a sum of circular functions [23 . The argument

of the Bessel functions contains the chordwise coordinate x , and consequently

the required number of terms, q , depends on the number of chordwise panels in

the array. In the present computations for one chordwise panel, satisfactory

accuracy is obtained using q = 6 .

III. FLb'fTER BOUNDARIES AND METHOD OF COMPUTATION

The flutter equations (i) are simultaneous algebraic equations for

the generalized coordinates qm • When N chordwise modes are used to repre-

sent the deflection function, N equations are obtained, each equation being

associated with a particular value of • . A nontrivial solution of the equa-

tions marks a condition of sustained harmonic oscillation or neutral stability



for the panel array. Loci of such points plotted in a suitable parametric
plane separate regions _Thereflutter will occur from regions of no flutter,
i.e., these locl maybe interpreted as flutter boundaries. The numerical re-
sults of the present study are presented in the form of such flutter bounda-
ries.

Before considering computation details it is useful to look briefly
at the general form of the flutter equations. For convenience, the equations
are first written in matrix form,

IPm'_l lqml
= o (2)

where

Pm'_ = _M 2 I(_2+s2)2_4_- + (81_2+82s2)_I 8m'_ " k2_Sm'_ + _B
(3)

Nine basic parameters appear in the equations, namely,

M -Mach number

k - reduced frequency

s - inverse of aspect ratio

g - structural damping coefficient

p - density in the free stream

Ps " material density
c_ - sound velocity in th_ free stream

E - modulus of elasticity

v - Poisson's ratio

The A_ _ are functions of M , k , and s • It is pertinent that the Am

are independent of the parameters associated with panel material and altitude,

i.e., P , Ps , c, E , and v • If 81 and 82 are momentarily ignored

(ox = _y = 0) , it is seen that the material-altltude parameters appear only

in _ and p . This means, in essence, that the nine basic parameters listed

above, are consolidated into six fundamental groups, M , k , s , g , m , and

. Thus, flutter boundaries can be obtained in general in terms of m and

_L and it is not necessary to make separate computations for each combination

of material and altitude of interest. This advantage can be extended to cases



of finite ax and _y by computing for an array of values 61 and 82 ,
and then interpreting the results in terms of ax and a for various values
of PsC_2 . The procedure Is somewhatindirect but the d_sadvantage is not
serious.

Returning now to the details of computation it is recalled that
flutter boundaries are to be obtained, consisting of locl of points represent-
ing nontrivial solutions of the flutter equations (2). For (2) to have a
nontrivlal solution it is necessary that

Det. IPm,_l = 0
(4)

which is commonly called the flutter condition. The problem, then, is to de-

termine those combinations of the parameters which satisfy the flutter con-
dition.

Since the determinant of (4) is complex and only real values of the

parameters have physical significance, two parameters must be kept free in

order to satisfy (4). It is convenient to take _ and _ as the free param-

eters. Flutter boundaries in the _-_ plane are then obtained for a selected

set of values M , s , g , 81 , 82 by determining the _-_ pairs which sat-
isfy (4) for various Judiciously chosen values of reduced frequency k . Two

procedures were used for finding these _-_ pairs. The first procedure to be

described was used initially and then discarded in favor of the second for

reasons that will be pointed out.

The first method consists of a trial and error procedure for deter-

mining the m-_ pairs which cause both the real and imaginary parts of the

determinant to vanish simultaneously. For a particular value of S and a

number of values of _ the real part, R , and the imaginary part, I, of the

flutter determinant are calculated. The values of _ for which R = 0 (Ro)

and I = 0 (Io) are obtained by interpolation. Next, _ is varie d and the

process repeated. In this manner the functions Ro(m ) and Io(_ ) become

known. The intersections of Ro(m ) and Io(_) determine the flutter points

and are obtained by interpolation. Although this method yields satisfactory

results, it leaves something to be desired in the way of economy and con-

venience of application. The principal difficulty arises from the fact that

the functions R (m) and I (_) are multi-valued and composed of several
branches in the o om-_ plane.
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The second method for determining _ and

determinant of (4) can be written as a polynomial in

ficients that depend on _ ,

is as follows. The

with complex coef-

D(_) = ao_m + al_m'l + ..... + am

Because D should vanish and ¼ must be real, the flutter condition becomes

f(ll) = tlm + (al/ao)R¼ m-I + ..... + (am/ao)R = 0

g(_) (allao)i_m'l (%1 o)I o---- + ,..... + a =

where the R and I subscripts mean "real part of" and "imaginary part of,"

respectively. Thus, at flutter, f(_) and g(_) must have at least one common

root. The condition that two polynomials in one variable have a common root

can be obtained from Euclid's algorithm [3]j as follows. Since f is of

higher degree in _ , it can be divided by g to give

_(_): %(_)g(_)+ _i(_)

where Qo is the quotient polynomial and R1 is the remainder polynomial.

Continuing the process by dividing g by R1 , etc., the following system of
identities results.

g(_) : Ql(_)Rl(_) + R2(_)

Rl(_) = %(_)R2(_,)+ R3(_)

_-1(_) : %(i_)_(_) + _+1



Now g , R1 , R2 , ... are polynomials of decreasing degrees in _ so that

after a finite number of steps a remainder, _+l ' is reached which is In-
dependent of _ . It can be shown that the cohdition that f and g have

at least one common root is R +l = O. Further, the common roots can be ob-

tained from _ _( ) = O. Since p ao , al , ..., am depends on _ ' _+l is a

function of a and the flutter condition is R_+l(_.) = O. The values of
corresponding to flutter can thus be determinedPby the usual interpolation

procedures. The associated values of _ follow from _(_) = O.

This second method for determining _ and _ is more straightfor-

ward than the first because only one parameter, m , is varied and _ follows

as an interim result of the procedure. Also pertinent is the fact that the

function R_+l(_ ) , which must be monitored in the computer program, is single-

valued in =contrast with the multl-valued functions Ro(m ) and Io(_ ) of the

first method. Most of the numerical results were obtained using this second

method.

Computation of the flutter boundaries are carried out on the I_

7090 computer. In all cases the chordwlse deflection shape of the panel array

is approximated by the first four natural vibration modes of a simply supported

beam. As noted earlier, the spanwlse deflection is approximated by the first

mode of a continuous beam, simply supported at equally spaced intervals. The

scope of the parametric study is discussed in the following section.

IV. SCOPE ANDRESULTS OF PARAMETRIC STUDY

Flutter characteristics are computed for semi-infinite panel arrays

of the type shown in Fig. 1. The desire of the parametric study is to examine

the effects of Mach number, length/width ratio, panel material, altitude, and

initial membrane forces. Computations are therefore carried out for length/

width ratios, s , of 1/4, 1/2 _ 1 , 2 , and 4 at each of six Mach numbers,

1.1 , 1.2S , 1.35 , _-- , 1.5 , and 2.0.* Generalized parameters are em-

ployed so that the results are applicable to a wide variety of panel materials

and altitudes. At the least, the altitude range sea-level to 50,000 ft. is

covered for brass, steel, titanium, aluminum, glass, magnesium, and copper.

(The materlal-altitude coverage is described more precisely later.) The

effects of membrane forces are not examined because of time limitations; all

results are obtained for zero membrane forces (_x = ay = 0).

* Two cases, s = 4 and M = i.i and 1.25 were not completed because of

numerical difficulties.



The numerical results of the parametric study are presented in Figs.
2 through 29 and Tables I through V.* Before examining these results in detail,
it is useful to first consider the parameters used for displaying the flutter
boundaries. It maybe recalled that, earlier, two general parameter groupings

and _ _ere identified, which consolidate the specific quantities associ-
ated with panel material and altitude. Use is madehere of _ and _ to
facilitate concise presentation of the numerical results. In the figures, the
parameter on the ordinate is _1/3 = _[E/pc 2(1__2jl/3 . 0n the abscissa the

parameter is (_3/_)1/2" = _1_ps/_[Ps(l__2/Ej1/2 which form was selected to

eliminate the thickness ratio v . The t_ro parameters are madeup of the
thickness ratio _ , material constants Ps ' E , and v , and airstream proper-
ties p and c_ . Therefore, the computedstability boundaries can be applied
conveniently, either to particular material-altitude combinations or to com-
binations of material and wind tunnel conditions p and c_ . The extent of
coverage provided by the parametric study is indicated in Fig. 36 where
(_3/a.)1/2 is plotted against altitude for sometypical panel materials.

The ordinate parameter _ _/pc_2(1-_2)]l/3 is closely related to a
dynamic pressure parameter, _ESE/q_l/3 , _rhich is commonlyused in the litera-
ture for correlation of experimental data. The two parameters are related by,

[ Ipc.2(1- 2)lll3x [2B(1- 2)IM2_lll3 -- 3

Returning no_ to consideration of the numerical results, it is re-

iterated that the results are completely contained in Figs. 2 through 29,

where the computed flutter boundaries areshmm in detail, one boundary to

each figure.** In subsequent figures the boundaries are reproduced together,

in lesser detail, for purposes of comparison. The region above the boundary

is the stable region as indicated. T_e stability boundaries, therefore, de-

fine the minimum thickness that will prevent flutter. A somewhat arbitrary

terminology is used to indicate the form of the flutter vector. A "first mode

dominant" boundary, for instance, is one for which the flutter vector consists

predominantly of the first generalized coordinate, ql ' the magnitude of the

second largest being less than ql/2 • A "first and second mode coupled"

boundary, on the other hand, is one where ql is largest and q2 second
largest, with q2 > ql/2 "

* Tables I through V are shown in Appendix B.

** The numerical data from which the boundaries are constructed are given in

Tables I to V. In the tables, the generalized coordinates, qm ' are
given in normalized polar form, referenced to the magnitude and phase of

the largest coordinate.
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Two interesting features are seen in the detailed stability bound-

aries (Figs. 2 to 29). First of all, there are cases where the critical flutter

vector changes abruptly from one mode of dominance to another. For instance,

for M = _ and s = 1/& (Fig. 5), an aluminum panel will flutter most

readily in the third mode at sea level, the fourth mode at higher altitudes,

and finally in the first and second modes coupled at altitudes above approxi-

mately l?,O00 ftJ Brass, steel, or titanium panels on the other handj will

always flutter in the coupled mode. This switching of flutter modes, _lhich is

noted for all length-width ratios except s _ 4 , is accompanied by significant

changes in flutter frequency (see the tables).

The second feature of interest is that the stability boundaries are

only fairly flat in the high Mach number regime, i.e., the parameter

_[E/pc_2(l-v2)]l/3 at flutter is insensitive to changes in panel material and

altitude only for M > _-_ , as theoretically expected. This point is clearly

illustrated in Figs. 50 through 34.

In Figs. 30 to 34 the stability boundaries for particular values of

length-width ratio are superposed. The uppermost boundaries are critical for

the Mach number range 1.1 to 2.0 considered in the parametric study. It is

seen that the lower Mach numbers are critical for small s and that the criti-

cal Mach number becomes larger with increasing s . The flutter vectors

associated with the critical boundaries are as follows.

s = i/_ ; first mode dominant

s = 1/2 ; second mode dominant

s = 1 ; third mode dominant

s = 2 ; fourth mode dominant

s = 4 ; third and fourth mode coupled

Thus, as s increases, the higher modes and higher Mach numbers become in-

creasingly important. Also, examination of the tabulated data shows that, in

general, coupling between modes increases as s increases.

In Fig. 35 the uppermost boundaries from Figs. 30 to 34 are shown in

superposition, to illustrate the pronounced stabilizing effect associated with

increasing values of the length-width ratio s . The effect is greatest at

ll



the smaller s values _here the lower modesdominate, but the reduction
thickness required to prevent flutter is still appreciable in going from
s= 2to s = 4 .

in

V. CONCLUSIONS AND RECOMMENDATIONS

The stability boundaries in Figs. 2 through 29 provide information

on the flutter characteristics of flat panels under a wide variety of condi-

tions. Detailed information for particular materials, altitudes, or wind

tunnel conditions can be obtained conveniently using intermediate relationships

of the type shown in Figs. 36 and 37. This detailed information should be of

use to the designer in lieu of presently unavailable design criteria, and to

the experimentalist in planning experiments and analyzing experimental observa-
tions.

A most critical need at this time is valid comparisons bet_;een

theory and experiment. The data presented here should facilitate such com-

parisons.

For the future it is suggested first of all, that the length-_Tidth

ratio s = & , treated here, should be further examined using six or more

modes in the analysis. It is felt that the general characteristics cited in

the previous section imply that the higher modes may have significant effect.

It is further suggested that the effects of initial membrane forces and more

than one panel in the chordwise direction be investigated, particularly since

the theory is available (Eq. (1)). Finally, a parametric study similar to the

one reported here, should be conducted for panels with partially clamped edges

since it is expected that in practical application (and experiments) boundary

conditions are somewhere between simply supported and clamped.

Midwest Research Institute

Kansas City, Missouri
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